Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole
نویسندگان
چکیده
We present the first numerical calculation of the (local) metric perturbation produced by a small compact object moving on an eccentric equatorial geodesic around a Kerr black hole, accurate to first order in the mass ratio. The procedure starts by first solving the Teukolsky equation to obtain the Weyl scalar ψ4 using semi-analytical methods. The metric perturbation is then reconstructed from ψ4 in an (outgoing) radiation gauge, adding the appropriate non-radiative contributions arising from the shifts in mass and angular momentum of the spacetime. As a demonstration we calculate the generalized redshift U as a function of the orbital frequencies Ωr and Ωφ to linear order in the mass ratio, a gauge invariant measure of the conservative corrections to the orbit due to self-interactions. In Schwarzschild, the results surpass the existing result in the literature in accuracy, and we find new estimates for some of the unknown 4PN and 5PN terms in the post-Newtonian expansion of U . In Kerr, we provide completely novel values of U for eccentric equatorial orbits. Calculation of the full self-force will appear in a forthcoming paper.
منابع مشابه
Gravitational self-force on eccentric equatorial orbits around a Kerr black hole
This paper presents the first calculation of the gravitational self-force on a small compact object on an eccentric equatorial orbit around a Kerr black hole to first order in the mass-ratio. That is the pointwise correction to the object’s equations of motion (both conservative and dissipative) due to its own gravitational field, which is treated as a linear perturbation to the background Kerr...
متن کاملCompletion of metric reconstruction for a particle orbiting a Kerr black hole
Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars ψ0 or ψ4, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated within the context of self-force physics, extends the procedure to metric perturbations sourced by a particle in a bound geodesic orbit. However, the existing p...
متن کاملZoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction
We study eccentric equatorial orbits of a test-body around a Kerr black hole under the influence of gravitational radiation reaction. We have adopted a well established two-step approach: assuming that the particle is moving along a geodesic ~justifiable as long as the orbital evolution is adiabatic! we calculate numerically the fluxes of energy and angular momentum radiated to infinity and to ...
متن کاملCircular and noncircular nearly horizon-skimming orbits in Kerr spacetimes
We have performed a detailed analysis of orbital motion in the vicinity of a nearly extremal Kerr black hole. For very rapidly rotating black holes—spin parameter a J=M > 0:9524M—we have found a class of very strong-field eccentric orbits whose orbital angular momentum Lz increases with the orbit’s inclination with respect to the equatorial plane, while keeping latus rectum and eccentricity fix...
متن کاملLindblad resonance torques in relativistic discs – II. Computation of resonance strengths
We present a fully relativistic computation of the torques due to Lindblad resonances from perturbers on circular, equatorial orbits on discs around Schwarzschild and Kerr black holes. The computation proceeds by establishing a relation between the Lindblad torques and the gravitational waveforms emitted by the perturber and a test particle in a slightly eccentric orbit at the radius of the Lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015